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Dynamical origin of deterministic stochastic resonance
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We numerically demonstrate stochastic-resonance-like behavior in a deterministic chaotic oscillator system,
using a modified Ro¨ssler system driven by a sinusoidal external force: intermittent 2p phase slips between the
system and the external force synchronize with a periodic input signal that weakly modulates the external force
in an appropriate parameter range. We show that the dynamical mechanism of this stochastic-resonance-like
behavior is explained by a boundary crisis that depends on two bifurcation parameters.
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During the last decade, stochastic resonance~SR! has
been extensively studied in a number of electrical, optic
and neuronal systems~see Ref.@1# and references therein!.
To date, most studies on SR have been carried out for
tems with stochastic noise. However, it is natural to look
SR-like phenomena in deterministic chaotic systems si
chaotic fluctuation is similar to noise. Anishchenkoet al. nu-
merically demonstrated in Ref.@2# that an SR-like phenom
enon can be caused by internal chaotic dynamics rather
stochastic noise. They used the dynamics of a o
dimensional chaotic map in the vicinity of a band-mergi
crisis and showed that the intermittent hopping between
different chaotic repellers synchronizes with the external
riodic signal. The SR-like phenomenon in chaotic syste
without stochastic noise is calleddeterministic stochastic
resonance~DSR!. DSR has been reported for certain oth
chaotic systems: numerically for the forced double-well D
fing system@3# and also in ferromagnetic resonance@4# and
chaotic CO2 laser@5# experiments. However, the dynamic
mechanism of DSR has yet to be fully understood, in that
one has provided a theoretical explanation of DSR in te
of the dynamics: it has not been clarified what type of cri
leads to DSR and how the crisis depends on the bifurca
parameters is essential for DSR although some relation
between a crisis and DSR has been pointed out base
numerical experiments@2#.

In this paper, we demonstrate that a chaotic oscillator s
tem with a weak periodic input signal exhibits DSR. We th
show theoretically that DSR in that system is caused b
boundary crisis that induces a collision between an attra
and a periodic orbit on its basin boundary. We specially e
phasize that the DSR mechanism is explained using the s
ing law of two bifurcation parameters in the boundary cris

We employ a modified Ro¨ssler system driven by a sinu
soidal external force@6#, where the coupling strength of th
external force is weakly modulated by a periodic modulat
signal,

ẋ5s~2ny2z!,

ẏ5s~nx1ay!1K@11e sin~vt !#sin~Vt !,

ż5s@b1z~x2c!#, ~1!

wheren, a, b, c, K, e, v, andV are constants. Throughou
this paper, we seta50.20, b50.20, c54.80, v56.0
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31024, andV51.077. We introduce the cylindrical coord
nate (u,r ,z) defined byx5r cosu, y5r sinu, andz5z. In

Eq. ~1!, s511a(r 22 r̄ 2), wherer̄ is the average value ofr
for an ordinary Ro¨ssler oscillator (a5K50,n51) and we
seta52.031023. The projection of the attractor on thex-y
plane forms a ring, in which a phase point always rota
around the origin. Therefore, we can useu as the phase o
the chaotic rotation. We adopt au value that is continuous
with respect to time: i.e., we distinguish integer multiples
2p differences ofu.

First, we consider the case ofe50. We focus on the phas
differenceDu5u2Vt. If K is larger than a critical value
Kc , Du is confined within a small range forall time while
the amplituder still fluctuates chaotically. This phenomeno
is called chaotic phase synchronization@6,7#. In contrast, for
K,Kc , Du increases in time with intermittent 2p jumps
althoughDu is almost constant except for these jumps.

Figure 1 shows the time evolution ofDu for certain val-
ues ofn. The phase differenceDu increases with a sequenc
of 2p jumps. These jumps are called phase slips and oc
more frequently asn increases. Therefore,n can be regarded
in a sense, as a parameter for controlling the intensity
internal chaotic fluctuation. We usen as a control paramete
that allows us to observe DSR.

We then consider a system whose coupling strength
modulated by a weak signal, that is,eÞ0. Figure 2 shows
that this modulation drastically changes the probability d
tribution r(t) of interslip intervals, which are durations be

FIG. 1. Time evolution of phase differenceDu.
©2001 The American Physical Society02-1
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tween two consecutive slips. Without the signal, the distri
tion is unimodal and decays exponentially for larget, but
with the signal, it develops multipeaks. The peaks are c
tered at integer multiples of the period 2p/v of the modu-
lating signal. This implies that phase slips are most likely
occur for a certain phase of the modulating signal. We
also say that the phase slips synchronize statistically with
signal.

In Fig. 3, the differenceDrn5re50.05(tn)2re50(tn) in
thenth peak height with and without the modulating signal
plotted versusn for n51,2, wherere50.05 and re50 repre-
sent r(t) for e50.05 and e50, respectively, andtn
52pn/v. The differenceDr1 for the first peak has a maxi
mum value atn.1.0038. For the second peak,Dr2 has its
maximum atn.1.0036, which is smaller thann for Dr1.
Coherent behavior with the signal appears for an appropr
value of n, that is, for an appropriate intensity of intern
randomness. It should be emphasized that this resonan
havior in Drn coincides with the characteristics of SR. Th
SR-like behavior is caused not by external stochastic n
but by chaotic internal fluctuation. Therefore, we call th
DSR.

Below, we clarify the dynamical mechanism of DSR. W
start with an approximate theory, which is based on a P
son process approximation@8,9#. Figure 2 indicates that fo
e50, r(t) can be well fitted to the exponential distributio

FIG. 2. Inter-slip interval distributionr(t) without a modulat-
ing signal (e50) and with a signal (e50.05).

FIG. 3. DifferenceDrn betweene50.0 ande50.05 versusn.
n51(s) and n52(L). The theoretical curve is also shown as
thick solid line.
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except in a smallt range, i.e.,r(t).l exp(2lt), where the
constantl represents the phase slip rate. The deviation fr
l exp(2lt) in the smallt range means that there is som
refractory time in successive phase slips. The exponen
form of r(t) in the larget range implies that successiv
phase slips are statistically independent: the probability o
phase slip occurring during a short periodDt is given by
lDt, with no memory. Whene50 in Eq. ~1!, the ratel is a
function of K andn, namely,l5 f (K,n).

For eÞ0, r(t) differs from the exponential distribution
In the present study, we consider the case of a slowly vary
periodic signal, i.e.,v!1. This condition means we can a
sume that the periodic signal only modulates the ratel, that
is, the occurrence of phase slips still follows a Poisson p
cess with thetime-dependentrate.

Suppose that one phase slip occurs att5t0 and that the
phase of the modulating signal at timet0 is f0
5vt0 mod2p (0<f0,2p). We define a new time variable
as t5t2t0. The time-dependent rate is given as a functi
of t andf0, and we denote it byl(tuf0). The probability
that the next phase slip occurs at timet can be given by
P(tuf0)5l(tuf0)exp@2*0

tl(t8uf0)dt8#. When the modulat-
ing signal is imposed, the time dependence ofl(tuf0) arises
from the modulation of variableK in f (K,n) (5l). If we
substituteK@11e sin(vt1f0)# into K and expandf with re-
spect to eK sin(vt1f0) to the first order, we obtain
l(tuf0)5 f (K,n)1@] f /]K(K,n)#eK sin(vt1f0). Thus, we
have

P~tuf0!5F f 1eK
] f

]K
sin~vt1f0!G

3expF2 f t1
eK

v

] f

]K
$cos~vt1f0!2cosf0%G .

~2!

We definefP@0,2p) as the phase of the modulating sign
at the time when the next phase slip occurs. The phasf
relates tot asf5f01vt22pm, wherem51,2, . . . if f
,f0 andm50,1, . . . if f>f0. If we change the variablet
to f in Eq. ~2!, we can obtain the probabilityPm(fuf0) that
the next phase slip occurs atvt5f2f012pm. The prob-
ability that one phase slip occurs atf0 and the next one a
fP@0,2p# is given by the sum ofPm over all possiblem
values:m51,2,3, . . . for f,f0 and m50,1,2, . . . for f
>f0. The explicit form ofP(fuf0) can be obtained from
Eq. ~2! as follows

P~fuf!5H F~f,f0!e2s~12e2s!21, f,f0 ,

F~f,f0!~12e2s!21, f>f0 ,
~3!

F~f,f0!5v21S f 1eK
] f

]K
sinf D

3expF2
f

v
~f2f0!1

eK

v

] f

]K
~cosf2cosf0!G ,

~4!

wheres52p f /v.
2-2
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Let W(f0) be the probability distribution for the phase
the modulating signal at which a phase slip occurs. In
steady state,W has to satisfy the integral equationW(f0)
5*0

2pP(f0uf8)W(f8)df8, which leads to distribution
W(f0)51/(2p f )@ f 1eK(] f /]K)sinf0#. We can obtain the
inter-slip interval distributionr(t) by integratingP(tuf0)
with the weightW(f0) over f0P@0,2p). The nth peak of
r(t) is located attn52pn/v. Therefore, we can calculat
the nth peak height as r(tn)5@ f 11/(2f)#$eK(]f/
]K)%2]exp(2ftn). With e50, the value ofr(t) at t5tn is
obtained asre50(tn)5 f exp(2ftn) by settinge50. If we
subtractre50(tn) from reÞ0(tn), then we obtain the differ-
enceDrn in the nth peak height between the two cases
e50 andeÞ0 as follows:

Drn~n!5
1

2 f S eK
] f

]K D 2

exp~2 f tn!. ~5!

The differenceDrn is a function ofn since f and ] f /]K
depend onn. In Eq. ~5!, f and] f /]K are quantities that are
defined in the signal free case (e50). This shows that
whether or notDrn exhibits resonance behavior depends
the signal free properties of the system. Equation~5! indi-
cates that Drn exhibits resonance behavior iff and
(] f /]K)2/ f are increasing functions ofn.

Next, we derive the functional form off (K,n) from the
dynamical properties of the system. The transition betw
the synchronization state with no phase slip and the de
chronization state with intermittent phase slips is shown
be caused by an unstable-unstable pair bifurcation c
@6,10#. A stroboscopic map of system~1! is useful as regards
observing this. A stroboscopic mapM :R3→R3,
(Du i ,r i ,zi)°(Du i 11 ,r i 11 ,zi 11) can be defined by sam
pling the flow of system~1! at timet52p i /V, wherei is an
integer.

It is shown in Ref.@6# that the attractor lies on a nea
two-dimensional manifold in (Du,r ,z) space, andDu is de-
fined on the line2`,Du,`. When the system is in the
synchronization state, there is an infinite array of such att
tors spaced by 2p in Du because of the invariance of syste
~1! to the transformationu°u62p. There is no path tha
connects the different attractors.

When the system is in the desynchronization state,
gions that were previously occupied by the different attr
tors, which we call the remnant attractors, are connected
certain trajectories. Here, the remnant attractor also lies o
near two-dimensional manifold. Figure 4 shows one of
remnant attractors, which is projected onto the (Du,r ) plane,
along with blue points on the manifold that will move to
wards the next remnant attractor displaced from the p
sented one by 2p. We call a set of these points a basin. T
numerical method we used for depicting Fig. 4 is the sam
that used in Ref.@6#. In Fig. 4, an example of a trajector
exhibiting a phase slip is also plotted by redh. This trajec-
tory moves from left to right passing through a narrow cha
nel, which appears to be the only dominant channel in
parameter range we used. The motion through the chann
slow and similar to the period one motion. We show that t
channel is created by a period one unstable-unstable
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bifurcation crisis@11#, whose process is as follows. There a
two unstable fixed points on the attractor and the ba
boundary of the next attractor when the parameters co
spond to the synchronization state. As the parame
change, these fixed points approach each other, coalesce
disappear. To demonstrate this process clearly, we define
displacementdmin of map M as a function ofDu by dmin
5minr,ziM (Du,r ,z)2(Du,r ,z)i , where M (Du,r ,z) stands
for the image of a point (Du,r ,z) given by mapM . Figure 5
showsdmin plotted as a function ofDu for n51.0038 and
someKs. By definition,dmin is zero at a fixed point. In Fig
5, there are sharp decreases indmin at two points for a large
K, which correspond to the fixed points. These two fix
points approach each other, coalesce, and disappearK
decreases. This confirms the existence of the abo
mentioned bifurcation process. In addition, the bifurcati
point can be found atKc50.1403.

We derive the form off based on a theory proposed in R
@10#. Near the bifurcation point, there are multiplicators; o
~approximately in theDu direction, which we call the
weakly unstable direction! is close to one and another~ap-
proximately in ther direction, which we call the strongly
unstable direction! has an absolute value larger than on

FIG. 4. ~Color! Remnant attractor and basin. A trajectory exhi
iting a phase slip is also plotted (h). Parameters aree50, K
50.07, andn51.0032.

FIG. 5. Displacementdmin plotted againstDu. Parameters are
e50 andn51.0038.
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which we denote bym. The other multiplicator is disre
garded since the motion is restricted to the manifold. T
dynamics in the weakly unstable direction is the same as
for usual saddle-node bifurcation. Therefore, for anyn, the
time tsl needed for the trajectory to pass through the chan
can be scaled bytsl;@Kc(n)2K#21/2 @12#. An important
point is thatKc is a function ofn. If we expandKc for n
2n0, we have tsl;@Kc(n0)1$]Kc(n0)/]n%(n2n0)
2K#21/2. A trajectory can pass through the channel if t
trajectory stays inside the channel fortsl . The distanceD(t)
from the channel center in the strongly unstable direct
grows exponentially in time, i.e.,D(t).D(0)umu t. Since
D(t) has to be smaller than the half widthC18 of the channel,
we haveD(0),C18umu2tsl. The trajectory initially has to visit
a very small region on the remnant attractor to enter
channel, whose measure is proportional toC18umu2tsl. If we
assume a uniform invariant probability density on the re
nant attractor, the probability of the trajectory visiting th
above small region during a unit time is also proportional
C18umu2tsl. This probability gives the slip ratef. Therefore,
using the scaling law fortsl , we arrive at

f .C1expF2C2H Kc1
]Kc

]n
~n2n0!2KJ 21/2G . ~6!

In Fig. 6, we plot a numerical result off (K,n) determined by
the inverse of the average inter-slip intervaltav against
@Kc(n)2K#21/2 for certain values ofn, whereKc(n) is de-
termined from thedmin calculations. The theoretical resu
Eq. ~6! is also shown by a dashed line in Fig. 6, where
v.

tat

e

ev
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-determine n051.0034,Kc50.1362, and ]Kc /]n510.25
from the dmin calculations andC151.6231028, and C2
519.89 by least-square fitting to the numerical result of.
They agree with each other very well. We can readily fi
that for Eq.~6!, f and (] f /]K)2/ f are increasing functions o
n in the parameter range we used. In Fig. 3, the theoret
curve ofDr1 obtained from Eqs.~5! and~6! actually shows
resonant behavior and good agreement with the nume
curve. To conclude, the dynamical mechanism of DSR
system~1! can be explained by a two-parameter unstab
unstable pair bifurcation crisis. Since an unstable-unsta
pair bifurcation crisis is one of typical crisis pattern, th
present mechanism provides one of typical DSR mechan
Furthermore, it is expected that this approach to explana
of DSR can widely be applied to other types of crises.

FIG. 6. Phase slip ratef plotted against@Kc(n)2K#21/2. Nu-
merical results are shown forn51.0030(3), 1.0036(s), and
1.0042(h). Scaling law Eq.~6! is also shown~dashed line!.
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